# Addition And Subtraction In Vedic Maths ﻿

Addition and subtraction in vedic maths

Usually if we want to add to numbers say 52 and 66 we would add the unit digits. and if there is any remainder we will bring it to the tens digit and atlast we will add the tens digit.

Now we will do it in the different way.

Let us take the same number 52 and 66.

The first step is to add the first number and the unit digit of the second number

ie. 52 + 6 = 58

The second step is to jump tens digit time.

our tens digit is 6.

Vedic Maths Subtraction

This Vedic Maths Subtraction method found as sutra in ancient vedas, is given below is very useful for such subtractions.

For example 1000 – 357 = ?

We simply take each figure in 357 from 9 and the last figure from 10.

Step 1.            9-3 = 6

Step 2.            9-5 = 4

Step 3.            10-7 = 3

So the answer is 1000 – 357 = 643

This always works for subtractions from numbers consisting of a 1 followed by

noughts: 100; 1000; 10,000 etc.

Similarly 10,000 – 1049 = 8951      (subtraction from 10000)

9-1 = 8

9-0 = 9

9-4 = 5

10-9 = 1

For 1000 – 83, in which we have more zeros than figures in the numbers being subtracted, we simply suppose 83 is 083.

So 1000 – 83 becomes 1000 – 083 = 917

Vedic maths multiplication

The Vedic method (the general method, at least) is based on the Urdhva-Tiryagbhyam sutra. A very terse sutra, it simply translates in English to say “vertically and crosswise”. The sutra is rather vague, so the technique, as well as an algebraic analysis of the technique, is presented in the following steps:

An Algebraic Perspective All numbers n the base 10 number system (and number systems of any other base, for that matter) consist of a number of digits. Each digit represents a multiple times a power of 10 (or whatever the number system’s base is). So, for example, given a number like 52, we could rewrite it as 5*10+2.

Algebraically speaking, we can express any 3-digit number as: ax+b (where a, and b are integers).

So, suppose we wanted to multiply 2 2-digit numbers. We can express them in polynomial form. Then, by foiling:

Algebraic Multiplication for Higher Numbers of Digits

So, for brief review, 2-digit by 2-digit algebraic multiplication goes as follows (x in all of the following examples is the base of the number system being used, which is usually 10):

Expanding to 3-digit by 3-digit algebraic multiplication:

Now, 4-digitby 4-digit algebraic multiplication (ax3+bx2+cx+d)(ex3+fx2+gx+h)=aex6+(af+be)x5+(ag+bf+ce)x4+(ah+bg+cf+de)x3+(bh+cg+df)x2+(ch+dg)x+dh

Final Destination for Haryana PSC Notes and Tests, Exclusive coverage of HPSC Prelims and Mains Syllabus, Dedicated Staff and guidence for HPSC Exams HPSC Notes brings Prelims and Mains programs for HPSC Prelims and HPSC Mains Exam preparation. Various Programs initiated by HPSC Notes are as follows:- For any doubt, Just leave us a Chat or Fill us a querry––

Hope we have satisfied your need for HPSC Prelims and Mains Preparation

#### Kindly review us to serve even better

HPSC Mains Test Series 2020

20 Quality mock tests and GS Mains Notes

Mains Test Series and Notes

Mains Printed Notes (With COD)

HPSC Prelims Test Series 2020

24 Quality mock tests and GS Prelims Notes

Prelims Test Series and Notes

Prelims Printed Notes (With COD)

[jetpack_subscription_form title=”Subscribe to HPSC Notes” subscribe_text=”Never Miss any HPSC important update!” subscribe_button=”Sign Me Up” show_subscribers_total=”1″]

error: Content is protected !!